UNIVERSIDAD COMPLUTENSE DE MADRID

PRUEBA DE ACCESO A LA UNIVERSIDAD PARA LOS MAYORES DE 25 AÑOS

AÑO **2022**

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES: El alumno deberá elegir una de las dos opciones A o B que figuran en el presente examen y contestar

razonadamente a los cuatro ejercicios de que consta la opción elegida. Para la realización de esta prueba puede utilizarse calculadora científica, siempre que no disponga de capacidad de

representación gráfica o de cálculo simbólico.

PUNTUACIÓN: La puntuación máxima de cada ejercicio se indica en el encabezamiento del mismo.

TIEMPO: 1 Hora y 30 minutos.

OPCIÓN A

Ejercicio 1. (3 puntos)

Dadas las matrices:

$$A = \begin{pmatrix} 1 & k & -1 \\ 3 & k+1 & -(k+1) \\ -1 & -2 & k-1 \end{pmatrix}$$

se pide:

- a) Calcúlense los valores del parámetro real k para los que no existe A^{-1} .
- b) Calcúlese la matriz inversa de A para k = 1.
- c) Calcúlese el rango de A para k = -1.

Ejercicio 2. (2,5 puntos)

Se dispone de un terreno de 40 m² de extensión dedicado al cultivo de hortalizas. El tiempo semanal dedicado al cultivo de zanahorias es de 45 minutos mientras que a la remolacha es de 50. En el caso de cultivarse ambas hortalizas se deberá plantar al menos 3 m² más de remolacha que de zanahorias. El beneficio total deberá ser de al menos 100 Euros, teniendo en cuenta que por cada m² de zanahorias y remolacha, el beneficio es de 5 Euros y de 6,5 Euros, respectivamente.

- a) Indíquese cuales con las restricciones del problema de optimización descrito.
- b) Represéntese la región factible.
- c) Calcúlese la cantidad que se debe cultivar de cada hortaliza para que el tiempo dedicado semanalmente sea mínimo.

Ejercicio 3. (2,0 puntos)

Sea un experimento aleatorio en el que los sucesos A y B son tales que $A \cap B = \emptyset$ y tienen probabilidades P(A) = 0.3 y P(B) = 0.4. Calcúlense:

- a) $P(\overline{A \cup B}) \vee P(\overline{A \cap B})$.
- b) $P(B|\overline{A}) \text{ y} P(\overline{A \cup B}|A)$.

Nota: \overline{S} denota al suceso complementario del suceso S.

Ejercicio 4. (2,5 puntos)

El tiempo de vida de un televisor se puede aproximar por una variable aleatoria con distribución normal de media μ y desviación típica 2.

- a) Si se toma una muestra aleatoria de tamaño 100 y $\mu = 20$. Calcúlese la probabilidad de que la media muestral sea inferior a 20,5 y superior a 19,5.
- b) Determínese el tamaño mínimo que debe tener la muestra para que el error máximo cometido al estimar μ mediante la media muestral sea menor que 0,5 con un nivel del 95%.

OPCIÓN B

Ejercicio 1. (2,5 puntos)

Dadas las matrices:

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 2 & 7 \\ 3 & -1 & -8 \\ -1 & 1 & 3 \end{pmatrix}, \qquad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \qquad C = \begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix}$$

se pide

- d) Calcúlense $(A B)^3$ y $(A B)^{11}$
- e) Resuélvase la ecuación matricial AX = C.

Ejercicio 2. (3,0 puntos)

Se considera la función real de variable real definida por

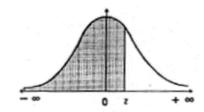
$$f(x) = \begin{cases} 5x + 50 & si & 0 \le x \le 10 \\ \frac{38x + 700}{9} & si & x > 10 \end{cases}$$

- a) Estúdiese su continuidad.
- b) Estúdiese el crecimiento y decrecimiento de f(x).
- c) Calcúlese el área de la región plana acotada por la gráfica de f(x), el eje de abscisas y las rectas x = 1 y x = 2.

Ejercicio 3. (2,5 puntos)

Una variable aleatoria continua X tiene la siguiente función de distribución acumulada

$$F(x) = \begin{cases} 0 & x < 1\\ k(x^4 + x^2 - 2) & 1 \le x \le 2\\ 1 & x > 2 \end{cases}$$


- a) Demuéstrese que k=1/18.
- b) Calcúlese P(X > 1.5).
- c) Determínese la función de densidad f(x) de X.

Ejercicio 4. (2,0 puntos)

Un juego consiste en lanzar un dado una vez. Si sale 4 ó 5 ó 6 se anota esa puntuación. Sin embargo, si sale 1 ó 2 ó 3 se vuelve a lanzar el dado y la puntuación final es la suma de los números mostrados en las 2 tiradas. Calcúlese la probabilidad de que:

- a) La puntuación final sea un 4.
- b) La puntuación final sea un 4 sabiendo que el dado se ha lanzado dos veces.

FUNCION DE DISTRIBUCION NORMAL N(0;1)

Z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	/	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989		0,9990
3,1	0,9990	0,9991	0,9991	0,9991	0,9992	0,9992	0,9992	0,9992	0,9993	0,9993
3,2	0,9993	0,9993	0,9994	0,9994	0,9994	0,9994	0,9994	0,9995	0,9995	0,9995
3,3	0,9995	0,9995	0,9995	0,9996	0,9996	0,9996	0,9996	0,9996	0,9996	0,9997
3,4	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9998
3,5	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998
3,6	0,9998	0,9998	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
3,7	0,9999	0,9999	0,9999	,	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
3,8	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999

Nota: En el interior de la tabla se da la probabilidad de que la variable aleatoria Z, con distribución N(0;1), esté por debajo del valor z.

CRITERIOS ESPECÍFICOS DE CORRECCIÓN

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

OPCION A

Ejercicio 1. (Puntuación máxima 3,0 puntos)

- a) Cálculo correcto del determinante: 0,5 puntos. Determinación de los valores de k: 0,5 puntos.
- b) Procedimiento correcto: 0,5 puntos. Cálculo correcto de la inversa, 0,75 puntos.
- c) Obtención correcta del rango: 0,75 puntos.

Ejercicio 2. (Puntuación máxima 2,5 puntos)

- a) Identificación correcta de las restricciones: 0,75 puntos.
- b) Representación de la región factible 1,0 puntos.
- c) Valoración de la función en los vértices, 0,25 puntos. Obtención del valor mínimo, 0,5 puntos.

Ejercicio 3. (Puntuación máxima 2,0 puntos)

- a) Por cada probabilidad: planteamiento correcto: 0,25 puntos. Probabilidad correcta: 0,25 puntos.
- b) Por cada probabilidad: planteamiento correcto: 0,25 puntos. Probabilidad correcta: 0,25 puntos.

Ejercicio 4. (Puntuación máxima 2,5 puntos)

- a) Planteamiento correcto: 0,5 puntos. Probabilidad correcta: 0,75 puntos.
- b) Cálculo correcto de $z_{\alpha/2}$: 0,25 puntos. Expresión correcta de la fórmula del tamaño: 0,5 puntos. Cálculo correcto de tamaño de la muestra: 0,5 puntos.

OPCION B

Ejercicio 1. (Puntuación máxima 2,5 puntos)

- a) Por la obtención correcta de cada matriz: 0,75 puntos.
- **b)** Resolución Correcta de la ecuación matricial: 1,0 punto.

Ejercicio 2. (Puntuación máxima 3,0 puntos)

- a) Estudio correcto de la continuidad: 1,0 punto.
- b) Obtención correcta de los intervalos de crecimiento: 1,0 punto.
- c) Cálculo correcto de la primitiva: 0,5 puntos. Cálculo del área: 0,5 puntos.

Ejercicio 3. (Puntuación máxima 2,5 puntos)

- a) Deducción correcta de k: 0,5 puntos.
- b) Cálculo correcto de la probabilidad: 1,0 punto.
- c) Determinación correcta de la función de densidad: 1,0 punto.

Ejercicio 4. (Puntuación máxima 2 puntos)

- a) Planteamiento correcto: 0,5 puntos. Probabilidad correcta: 0,5 puntos.
- b) Planteamiento correcto: 0,5 puntos. Probabilidad correcta: 0,5 puntos.