

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS

Curso 2017-2018

MATERIA: QUÍMICA

INSTRUCCIONES GENERALES Y VALORACIÓN

Estructura de la prueba: la prueba se compone de dos opciones "A" y "B", cada una de las cuales **consta de 5 preguntas** que, a su vez, comprenden varias cuestiones. Sólo se podrá contestar una de las dos opciones, desarrollando íntegramente su contenido. En el caso de mezclar preguntas de ambas opciones la prueba será calificada con 0 puntos.

Puntuación: la calificación máxima total será de 10 puntos, estando indicada en cada pregunta su puntuación parcial.

Tiempo: 1 hora y 30 minutos.

OPCIÓN A

Pregunta A1.- Dadas las configuraciones electrónicas de los siguientes elementos A: 1s²2s²2p⁵ y B: 1s²2s²2p⁶3s¹.

- a) Determine su posición en la tabla periódica (período y grupo).
- b) Indique nombre y símbolo de estos elementos.
- c) Justifique si alguno de los siguientes grupos de números cuánticos es posible y puede corresponder al electrón más externo de alguno de los elementos en su estado fundamental, indicando a cuál: (2, 1, 0, +1/2); (3, 0, 1, -1/2); (4, 1, 0, +1/2).
- d) Justifique cuál de estos elementos es el más electronegativo.

Puntuación máxima por apartado: 0,5 puntos.

Pregunta A2.- Se preparan disoluciones acuosas de igual concentración de las especies: cloruro de potasio (KCl), cloruro de amonio (NH₄Cl) e hidróxido de sodio (NaOH). Conteste de forma razonada:

- a) ¿Qué disolución tiene mayor pH?
- b) ¿Qué disolución no varía su pH al diluirla con agua?
- c) ¿Se producirá reacción si se mezclan las disoluciones de NH₄Cl y NaOH?
- d) ¿Cuál es la K_a de la especie NH₄⁺?

Dato. K_b (amoniaco) = 1,8×10⁻⁵.

Puntuación máxima por apartado: 0,5 puntos.

Pregunta A3.- Se dispone de dos disoluciones acuosas de CuNO₃ de concentración 0,5 M. A una de ellas se le añade un trozo de cromo (Cr) y a la otra un trozo de plata (Ag). A partir de los potenciales de reducción que se especifican en los datos:

- a) Escriba y ajuste las posibles semirreacciones de oxidación y reducción en las que intervienen Ag, Cr y Cu⁺ e indique el comportamiento oxidante o reductor de los mismos.
- b) Ajuste las reacciones globales y calcule los valores de E⁰ de las dos reacciones redox posibles y justifique si alguna de ellas es espontánea.

Datos. $E^{0}(Cu^{+}/Cu) = 0.52 \text{ V}; E^{0}(Cr^{3+}/Cr) = -0.74 \text{ V}; E^{0}(Ag^{+}/Ag) = 0.80 \text{ V}.$

Puntuación máxima por apartado: 1 punto.

Pregunta A4.- Nombre las siguientes moléculas orgánicas:

- a) CH₃-CH₂-CH₂-CHO
- b) CH₃-CH₂-O-CH₃
- c) CH₃-CH₂-COOH
- d) CH₃–NH–CH₂–CH₃

Puntuación máxima por apartado: 0,5 puntos.

Pregunta A5.- En un reactor de 10 L se introducen 0,5 de moles de $H_2(g)$ y 0,25 de $I_2(g)$ y se permite alcanzar el equilibrio, $H_2(g) + I_2(g) = 2HI(g)$, a 700 K.

- a) Calcule la presión inicial del reactor.
- b) Cuando se alcanza el equilibrio, el número de moles de HI es igual a 0,35. Determine el valor de K_c.
- c) ¿Cómo afecta al equilibrio un aumento de la presión total del reactor?

Dato. $R = 0.082 \text{ atm} \cdot L \cdot \text{mol}^{-1} \cdot K^{-1}$.

Puntuación máxima por apartado: 0,75 puntos apartados a) y b); 0,5 puntos apartado c).

OPCIÓN B

Pregunta B1.- Dadas las moléculas NH₃ y CH₄:

- a) Justifique sus geometrías.
- b) Justifique qué molécula es polar.
- c) Justifique qué molécula presenta enlace de hidrógeno.

Puntuación máxima por apartado: 1 punto apartado a); 0,5 puntos apartados b) y c).

Pregunta B2.- Para la reacción elemental $A + B \rightarrow C$:

- a) Escriba la ecuación cinética.
- b) Indique los órdenes parciales de reacción respecto de A v B, v el orden total de reacción.
- c) Determine las unidades de la constante cinética k.
- d) Explique cómo se modifica la constante cinética, k, al aumentar la temperatura de la reacción.

Puntuación máxima por apartado: 0,5 puntos.

Pregunta B3.- Formule las siguientes moléculas orgánicas:

- a) 3-metilbutanal.
- b) Butil metil éter.
- c) Ácido butanoico.
- d) Trimetilamina.

Puntuación máxima por apartado: 0,5 puntos.

Pregunta B4.- Para la siguiente reacción redox sin ajustar: $H_2SO_4 + KBr \rightarrow SO_2 + Br_2 + K_2SO_4 + H_2O$:

a) Escriba y ajuste las semirreacciones de oxidación y reducción, y la reacción molecular global.

Si a 20 mL de una disolución de H₂SO₄ 0,5 M se le añaden 15 g de KBr (s):

- b) Justifique cuantitativamente cuál es el reactivo limitante.
- c) Calcule el número de moles final de Br₂.

Datos. Masas atómicas: K = 39; Br = 80.

Puntuación máxima por apartado: 0,75 puntos apartados a) y b); 0,5 puntos apartado c).

Pregunta B5.- Se preparan 150 mL de una disolución 1 M de NaOH. Determine:

- a) La masa de NaOH necesaria.
- b) El volumen de la disolución 1 M que hay que tomar para preparar 150 mL de una disolución de NaOH de pH = 13.
- c) El volumen de HNO₃ concentrado del 68% de riqueza en masa y densidad 1,53 g·cm⁻³ que hay que utilizar para neutralizar totalmente la disolución del enunciado.

Datos. Masas atómicas: H = 1,0; N = 14,0; O = 16,0 y Na = 23,0.

Puntuación máxima por apartado: 0,5 puntos apartado a); 0,75 puntos apartados b) y c).

QUÍMICA

CRITERIOS ESPECÍFICOS DE CORRECCIÓN Y CALIFICACIÓN

Cada una de las preguntas se podrá calificar con un máximo de 2 puntos.

Si se han contestado preguntas de más de una opción, únicamente deberán corregirse las de la opción a la que corresponda la pregunta resuelta en primer lugar.

Se tendrá en cuenta en la calificación de la prueba:

- 1.- Claridad de comprensión y exposición de conceptos.
- 2.- Uso correcto de formulación, nomenclatura y lenguaje químico.
- 3.- Capacidad de análisis y relación.
- 4.- Desarrollo de la resolución de forma coherente y uso correcto de unidades.
- 5.- Aplicación y exposición correcta de conceptos en el planteamiento de los problemas.

Distribución de puntuaciones máximas para este ejercicio

OPCIÓN A

Pregunta A1.- 0,5 puntos cada uno de los apartados.

Pregunta A2.- 0,5 puntos cada uno de los apartados.

Pregunta A3.- 1 punto cada uno de los apartados.

Pregunta A4.- 0,5 puntos cada uno de los apartados.

Pregunta A5.- 0,75 puntos apartados a) y b); 0,5 puntos apartado c).

OPCIÓN B

Pregunta B1.- 1 punto apartado a); 0,5 puntos apartados b) y c).

Pregunta B2.- 0,5 puntos cada uno de los apartados.

Pregunta B3.- 0,5 puntos cada uno de los apartados.

Pregunta B4.- 0,75 puntos apartados a) y b); 0,5 puntos apartado c).

Pregunta B5.- 0,5 puntos apartado a); 0,75 puntos apartados b) y c).

GUIÓN DE RESPUESTAS

Pregunta A1.- Puntuación máxima por apartado: 0,5 puntos.

- a) Situación en el sistema periódico:
 - A: Grupo 17 (halógenos), período 2°.
 - B: Grupo 1 (alcalinos), período 1°.
- b) A: Fluor, F. B: Sodio, Na.
- c) (2, 1, 0, +1/2) Corresponde a un electrón 2p, por lo que podría pertenecer al F.
 - (3, 0, 1, -1/2) Esta combinación de números cuánticos no es posible, porque si l=0 no es posible m=1.
 - (4, 1, 0, +1/2) Corresponde a un electrón 4p, por lo que no pertenece a ninguno de los elementos en su estado fundamental.
- d) Los valores de electronegatividad aumentan hacia la derecha en un periodo (tienen más tendencia a adquirir la configuración de gas noble) y al subir en un grupo (el radio atómico disminuye y los electrones están cada vez más atraídos), por lo que el elemento más electronegativo de los dos es el F.

Pregunta A2.- Puntuación máxima por apartado: 0,5 puntos.

- a) La de NaOH ya que es una base fuerte. Tendrá pH >7. El KCl es una sal neutra mientras que el NH₄Cl se hidroliza obteniendo una disolución ácida.
- b) La de KCl ya que su pH no depende de la concentración al estar formada por anión neutro y catión neutro.
- Sí se producirá reacción entre las disoluciones de NaOH y NH₄Cl que son básica y ácida c) respectivamente.
- d) $N\tilde{H_4}Cl$: $K_a(NH_4^+) = 10^{-14} / 1,8 \times 10^{-5} = 5.6 \times 10^{-10}$.

Pregunta A3.- Puntuación máxima por apartado: 1 punto.

- a) $Cu^+ + e^- \rightarrow Cu$ (se reduce) oxidante
 - $Ag \rightarrow Ag^+ + e^-$ (se oxida) reductor
 - $Cr \rightarrow Cr^{3+} + 3e^{-}$ (se oxida) reductor
- b) Para la reacción global $Cu^+ + Ag^0 \rightarrow Cu^0 + Ag^+, E^0 = 0,52-0,80 = -0,28V$ Para la reacción global $3Cu^+ + Cr^0 \rightarrow 3Cu^0 + Cr^{3+}, E^0 = 0,52+0,74 = 1,26V$

Para que sea espontánea $E^0 > 0$, luego la reacción que tiene lugar es $3Cu^+ + Cr^0 \rightarrow 3Cu^0 + Cr^{3+}$

Pregunta A4.- Puntuación máxima por apartado: 0,5 puntos.

- a) Butanal.
- b) Etilmetil éter.
- c) Ácido propanoico.
- d) Etilmetilamina.

Pregunta A5.- Puntuación máxima por apartado: 0,75 puntos apartados a) y b); 0,5 puntos apartado c).

- a) $p \cdot V = n_t \cdot R \cdot T$; $p = 0.75 \times 0.082 \times 700 / 10 = 4.3$ atm
- b) $n_{HI} = 2 \times x = 0.35 \Rightarrow$ x = 0.175; $n_{H2} = 0.5 - 0.175 = 0.325 \text{ mol y } n_{12} = 0.25 - 0.175 = 0.075 \text{ mol.}$ $K_c = [HI]^2 / ([H_2] \cdot [I_2]) = (0.35/10)^2 / ((0.325/10) \times (0.075/10)) = 5.0$
- c) Dado que hay los mismos moles de gas en los reactivos que en los productos un aumento de la presión total del reactor no afectará el equilibrio.

Pregunta B1.- Puntuación máxima por apartado: 1 punto apartado a); 0,5 puntos apartados b) y c).

- a) NH₃ es piramidal. Posee cuatro pares de electrones alrededor del nitrógeno (distribución tetraédrica o hibridación sp³) y tres de estas direcciones están ocupadas por pares que comparte con hidrógenos.
 CH₄ es tetraédrica porque posee cuatro pares de electrones alrededor del carbono (distribución tetraédrica o hibridación sp³) y todas están ocupadas por pares que comparte con los hidrógenos.
- b) NH₃ es polar por tener enlaces polares y ser piramidal (no se compensan). CH₄ es apolar porque, aunque los enlaces son polares, se compensan sus momentos dipolares por razones geométricas.
- c) NH₃ porque es la única de estas moléculas en la que el átomo unido al hidrógeno es muy electronegativo.

Pregunta B2.- Puntuación máxima por apartado: 0,5 puntos.

- a) v = k [A][B]
- b) Órdenes parciales: 1 respecto a A, 1 respecto a B. Orden total = 2
- c) {Unidades k} = {unidades v}/{unidades c}^2 = mol·L⁻¹·s⁻¹ / (mol·L⁻¹)² = L·mol⁻¹·s⁻¹.
- d) Por la ecuación de Arrhenius un aumento de la temperatura aumenta el valor de la constante cinética.

Pregunta B3.- Puntuación máxima por apartado: 0,5 puntos.

- a) CH₃-CH(CH₃)-CH₂-CHO
- b) CH₃-O-CH₂-CH₂-CH₂-CH₃
- c) HOOC-CH₂-CH₂-CH₃
- d) $N(CH_3)_3$

Pregunta B4.- Puntuación máxima por apartado: 0,75 puntos apartados a) y b); 0,5 puntos apartado c).

- a) $2Br^- \rightarrow Br_2 + 2 e^-$ Oxidación $SO_4^{2-} + 4H^+ + 2e^- \rightarrow SO_2 + 2H_2O$ Reducción $2Br^- + SO_4^{2-} + 4H^+ \rightarrow Br_2 + SO_2 + 2H_2O$ $2H_2SO_4 + 2KBr \rightarrow SO_2 + Br_2 + K_2SO_4 + 2H_2O$
- b) $n_0 (H_2SO_4) = 0.5 \times 0.02 = 0.01 \text{ mol}$ $n_0 (KBr) = 15 / 119 = 0.13 \text{ mol}$

Reacción completa de n_0 (KBr) requieren 0,13 mol $H_2SO_4 > n_0$ (H_2SO_4) \Rightarrow limitante H_2SO_4 .

c) $n_f(Br_2) = n_0 (H_2SO_4)/2 = 0.005 \text{ mol.}$

Pregunta B5.- Puntuación máxima por apartado: 0,5 puntos apartado a); 0,75 puntos apartados b) y c).

- a) 1 = (masa/Pm)/V = (masa/40) / 0.15; masa = 6 g de NaOH
- b) $[H^+] = 10^{-13}$; $[OH^-] = 10^{-14}/10^{-13} = 10^{-1} M$; $[NaOH] = 10^{-1} M$; $150 \times 10^{-1} = V \times 1$; V = 15 mL
- c) M(HNO₃) = $(1530 \times 0.68) / 63 = 16.5$ M moles de NaOH = moles de HNO₃; $150 \times 1 = V \times 16.5$; V = 9.1 mL